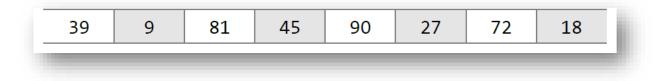
Selection, Merge & Radix Sorts

Kuan-Yu Chen (陳冠宇)

2020/11/25 @ TR-212, NTUST

Sorting


- Sorting means arranging the elements of an array so that they are placed in some relevant order which may be either ascending or descending
- A sorting algorithm is defined as an algorithm that puts the elements of a list in a certain order, which can be either **numerical** order, **lexicographical** order, or **any user-defined** order
 - Bubble, Insertion, Selection, Tree
 - Merge, Quick, Radix, Heap, Shell

Selection Sort.

- Selection sort is also a simple algorithm for sorting
- The procedure of the selection sort
 - Consider an array with *N* elements
 - First find the smallest value in the array and place it in the first position
 - Then, find the second smallest value in the array and place it in the second position
 - Repeat this procedure until the entire array is sorted

Example

• Please sort a given data array by using selection sort

PASS	ARR[0]	ARR[1]	ARR[2]	ARR[3]	ARR[4]	ARR[5]	ARR[6]	ARR[7]
1	9	39	81	45	90	27	72	18
2	9	18	81	45	90	27	72	39
3	9	18	27	45	90	81	72	39
4	9	18	27	39	90	81	72	45
5	9	18	27	39	45	81	72	90
6	9	18	27	39	45	72	81	90
7	9	18	27	39	45	72	81	90

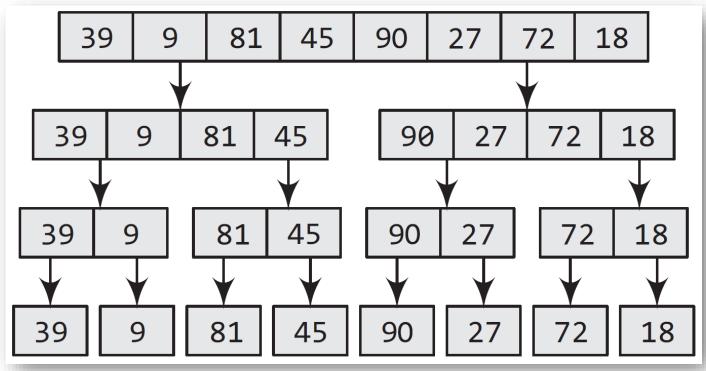
Selection Sort..

```
SELECTION SORT(ARR, N)
```

|--|

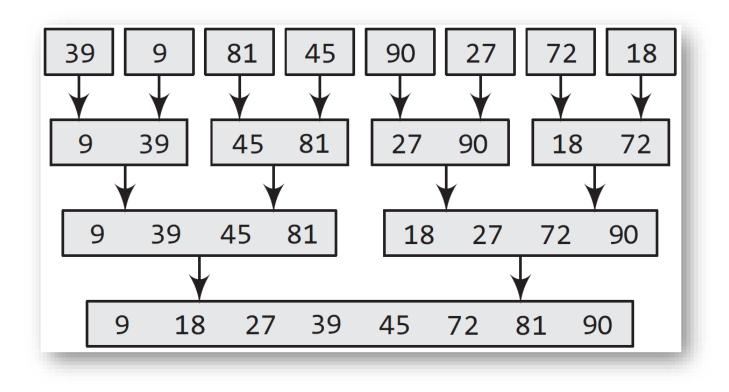
PASS	ARR[0]	ARR[1]	ARR[2]	ARR[3]	ARR[4]	ARR[5]	ARR[6]	ARR[7]
1	9	39	81	45	90	27	72	18
2	9	18	81	45	90	27	72	39
3	9	18	27	45	90	81	72	39
4	9	18	27	39	90	81	72	45
5	9	18	27	39	45	81	72	90
6	9	18	27	39	45	72	81	90
7	9	18	27	39	45	72	81	90

Merge Sort.


- Merge sort is a sorting algorithm that uses the divide, conquer, and combine algorithmic paradigm
 - *Divide* means partitioning the *n*-element array to be sorted into two sub-arrays
 - *Conquer* means sorting the two sub-arrays recursively
 - *Combine* means merging the two sorted sub-arrays

Example.

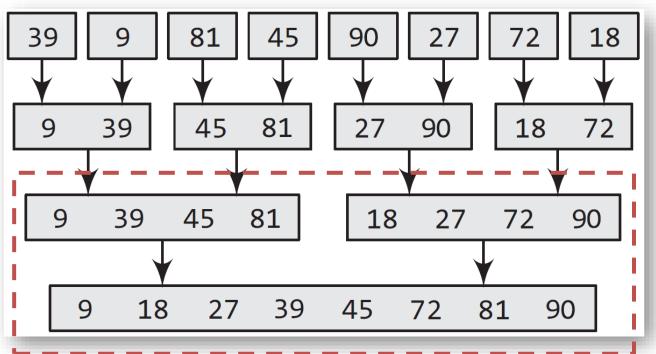
• Sort the given array using merge sort



- Divide and Conquer

Example..

- Conquer & Combine

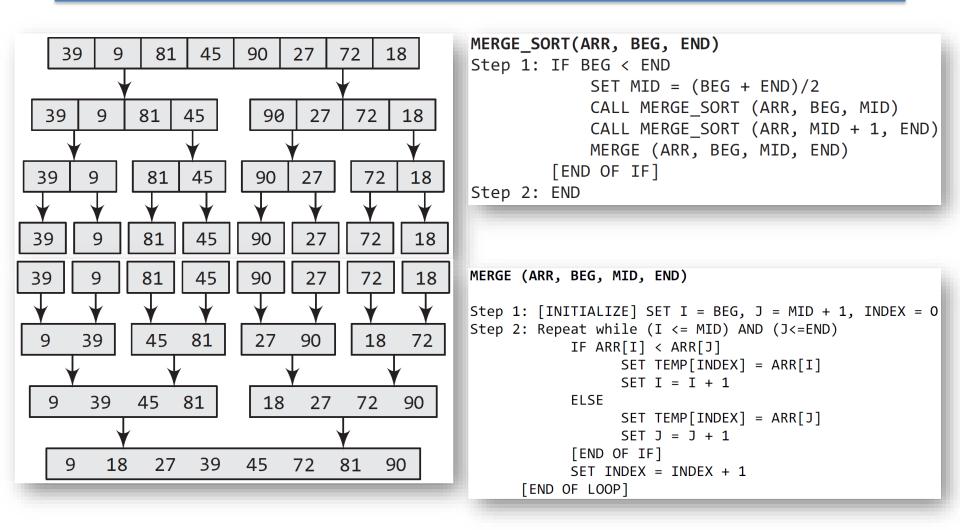


Merge Sort..

```
MERGE_SORT(ARR, BEG, END)
Step 1: IF BEG < END
        SET MID = (BEG + END)/2
        CALL MERGE_SORT (ARR, BEG, MID)
        CALL MERGE_SORT (ARR, MID + 1, END)
        MERGE (ARR, BEG, MID, END)
        [END OF IF]
Step 2: END</pre>
```

Merge Sort...

- The concept of the merge function is to compare two subarrays (ARR[I] and ARR[J]), the smaller of the two is placed in a temp array (TEMP) at the location specified by a index (INDEX) and subsequently the index value (I or J) is incremented
 - Example for the merge function


Merge Sort....

_			1						TEMP							_
9	39	45	81	18	27	72	90		9							
BEG,	I		MID	J			END		INDEX	< label{eq:starter}						
_									TEMP							
9	39	45	81	18	27	72	90		9	18						
BEG	I		MID	J			END			INDEX						
9	39	45	81	18	27	72	90		9	18	27					
BEG	I		MID		J		END				INDEX	(
9	39	45	81	18	27	72	90		9	18	27	39				
BEG	I		MID			J	END					INDEX	(
9	39	45	81	18	27	72	90		9	18	27	39	45			
BEG		I	MID			J	END						INDEX			
9	39	45	81	18	27	72	90		9	18	27	39	45	72		
BEG			I, MII)		J	END		INDEX							
9	39	45	81	18	27	72	90		9	18	27	39	45	72	81	
BEG			I, MI	2	J END										INDEX	
9	39	45	81	18	27	72	90		9	18	27	39	45	72	81	90
BEG			MID	I			J END	_								INDEX

Merge Sort.....

```
MERGE (ARR, BEG, MID, END)
Step 1: [INITIALIZE] SET I = BEG, J = MID + 1, INDEX = 0
Step 2: Repeat while (I <= MID) AND (J<=END)</pre>
             IF ARR[I] < ARR[J]</pre>
                   SET TEMP[INDEX] = ARR[I]
                   SET I = I + 1
             FLSE
                   SET TEMP[INDEX] = ARR[J]
                   SET J = J + 1
             [END OF IF]
            SET INDEX = INDEX + 1
      [END OF LOOP]
```

Merge Sort.....

Radix Sort.

• Radix sort is a linear sorting algorithm for **integers** and uses the concept of sorting names in alphabetical order

- Radix sort is also known as bucket sort

```
Algorithm for RadixSort (ARR, N)
Step 1: Find the largest number in ARR as LARGE
Step 2: [INITIALIZE] SET NOP = Number of digits in LARGE
Step 3: SET PASS = 0
Step 4: Repeat Step 5 while PASS <= NOP-1</pre>
                  SET I = 0 and INITIALIZE buckets
Step 5:
Step 6:
                  Repeat Steps 7 to 9 while I<N-1
Step 7:
                        SET DIGIT = digit at PASSth place in A[I]
                        Add A[I] to the bucket numbered DIGIT
Step 8:
                        INCEREMENT bucket count for bucket numbered DIGIT
Step 9:
                  [END OF LOOP]
Step 10:
                  Collect the numbers in the bucket
        [END OF LOOP]
Step 11: END
```

Example.

• Sort the given numbers using radix sort

345, 654, 924, 123, 567, 472, 555, 808, 911

- The first step: The numbers are sorted according to the digit at ones place
 - The new order is 911, 472, 123, 654, 924, 345, 555, 567, 808

Number	0	1	2	3	4	5	6	7	8	9
345						345				
65 <mark>4</mark>					654					
92 <mark>4</mark>					924					
12 <mark>3</mark>				123						
56 <mark>7</mark>								567		
47 <mark>2</mark>			472							
55 <mark>5</mark>						555				
80 <mark>8</mark>									808	
91 <mark>1</mark>		911								

Example..

- After the first step, the new sequence is 911, 472, 123, 654, 924, 345, 555, 567, 808
- The second step
 - The numbers are sorted according to the digit at the tens place
 - Consequently, the new order is: 808, 911, 123, 924, 345, 654, 555, 567, 472

Number	0	1	2	3	4	5	6	7	8	9
9 <mark>1</mark> 1		911								
4 <mark>7</mark> 2								472		
123			123							
<mark>6</mark> 54						654				
9 <mark>2</mark> 4			924							
345					345					
555						555				
5 <mark>6</mark> 7							567			
8 <mark>0</mark> 8	808									

Example...

- After the second step, the new sequence is 808, 911, 123, 924, 345, 654, 555, 567, 472
- The third step is
 - The numbers are sorted according to the digit at the hundreds place
 - Finally, the ordered sequence is: 123, 345, 555, 567, 654, 808, 911, 924

Number	0	1	2	3	4	5	6	7	8	9
8 <mark>08</mark>									808	
911										911
123		123								
924										924
3 <mark>45</mark>				345						
<mark>6</mark> 54							654			
555						555				
567						567				
472					472					

Questions?

kychen@mail.ntust.edu.tw